Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 34 entries in the Bibliography.


Showing entries from 1 through 34


2021

The Roles of the Magnetopause and Plasmapause in Storm-Time ULF Wave Power Enhancements

Abstract Ultra Low Frequency (ULF) waves play a crucial role in transporting and coupling energy within the magnetosphere. During geomagnetic storms, dayside magnetospheric ULF wave power is highly variable with strong enhancements that are dominated by elevated solar wind driving. However, the radial distribution of ULF wave power is complex - controlled interdependently by external solar wind driving and the internal magnetospheric structuring. We conducted a statistical analysis of observed storm-time ULF wave power from the Van Allen Probes spacecraft within 2012 - 2016. Focusing on the dayside (06 < Magnetic Local Time ≤ 15), we observe large enhancements across 3 < L < 6 and a steep L dependence during the main phase. We consider how accounting for concurrent magnetopause and plasmapause locations may reduce statistical variability and improve parameterisation of spatial trends over and above using the L value. Ordering storm time ULF wave power by L provides the weakest dependences from those considered, whereas ordering by distance from the magnetopause is more effective. We also explore dependences on local plasma density and find that spatially localised ULF wave power enhancements are confined within high density patches in the afternoon sector (likely plasmaspheric plumes). The results have critical implications for empirical models of ULF wave power and radial diffusion coefficients. We highlight the necessity of improved characterisation of the highly distorted storm-time cold plasma density distribution, in order to more accurately predict ULF wave power.

Sandhu, J.; Rae, I.; Staples, F.; Hartley, D.; Walach, M.-T.; Elsden, T.; Murphy, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029337

ULF waves; Geomagnetic storms; Van Allen Probes; radial diffusion; inner magnetosphere; plasmasphere

Observations and simulations of dropout events and flux decays in October 2013: Comparing MEO equatorial with LEO polar orbit

Abstract We compare ESA PROBA-V observations of electron flux at LEO with those from the NASA Van Allen Probes mostly at MEO for October 2013. Dropouts are visible at all energy during 4 storms from both satellites. Equatorial trapped electron fluxes are higher than at LEO by 102 (<1 MeV) to 105 (>2.5 MeV). We observe a quite isotropic structure of the outer belt during quiet times, contrary to the inner belt, and pitch angle dependence of high energy injection. We find very good overlap of the outer belt at MEO and LEO at ∼0.5 MeV. We use test-particle simulations of the energetic electrons trapped in the terrestrial magnetic field to study the outer radiation belt electron flux changes during geomagnetic storms. We show that the Dst (Disturbance storm time) effect during the main phase of a geomagnetic storm results in a betatron mechanism causing outward radial drift and a deceleration of the electrons. This outward drift motion is energy independent, pitch angle dependent, and represent a significant distance (∼1 L-shell at L=5 for moderate storms). At fixed L-shell, this causes a decay of the LEO precipitating flux (adiabatic outward motion), followed by a return to the normal state (adiabatic inward motion) during main and recovery phases. Dst effect, associated with magnetopause shadowing and radial diffusion can explain the main characteristics of outer radiation belt electron dropouts in October 2013. We also use Fokker-Planck simulations with event-driven diffusion coefficients at high temporal resolution, in order to distinguish instantaneous loss from the gradual scattering that depopulates the slot region and the outer belt after storms. Simulations reproduce the slot formation and the gradual loss in the outer belt. The typical energy-dependence of these losses leads to the absence of scattering for relativistic and ultra-relativistic electrons in the outer belt, oppositely to dropouts.

Pierrard, V.; Ripoll, J.-F.; Cunningham, G.; Botek, E.; Santolik, O.; Thaller, S.; Kurth, W.; Cosmides, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028850

Radiation belts; relativistic electrons; Geomagnetic storms; energetic particles; Van Allen Probes

ULF Wave Driven Radial Diffusion During Geomagnetic Storms: A statistical analysis of Van Allen Probes observations

Abstract The impact of radial diffusion in storm time radiation belt dynamics is well-debated. In this study we quantify the changes and variability in radial diffusion coefficients during geomagnetic storms. A statistical analysis of Van Allen Probes data (2012 − 2019) is conducted to obtain measurements of the magnetic and electric power spectral densities for Ultra Low Frequency (ULF) waves, and corresponding radial diffusion coefficients. The results show global wave power enhancements occur during the storm main phase, and continue into the recovery phase. Local time asymmetries show sources of wave power are both external solar wind driving and internal sources from coupling with ring current ions and substorms. Wave power enhancements are also observed at low L values (L < 4). The accessibility of wave power to low L is attributed to a depression of the Alfvén continuum. The increased wave power drives enhancements in both the magnetic and electric field diffusion coefficients by more than an order of magnitude. Significant variability in diffusion coefficients is observed, with values ranging over several orders of magnitude. A comparison to the Kp parameterised empirical model of Ozeke et al. (2014) is conducted and indicates important differences during storm times. Although the electric field diffusion coefficient is relatively well described by the empirical model, the magnetic field diffusion coefficient is approximately ∼ 10 times larger than predicted. We discuss how differences could be attributed to dataset limitations and assumptions. Alternative storm-time radial diffusion coefficients are provided as a function of L* and storm phase.

Sandhu, J.; Rae, I.; Wygant, J.; Breneman, A.; Tian, S.; Watt, C.; Horne, R.; Ozeke, L.; Georgiou, M.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029024

ULF waves; radial diffusion; outer radiation belt; Van Allen Probes; Geomagnetic storms

Simulating the Ion Precipitation From the Inner Magnetosphere by H-Band and He-Band Electro Magnetic Ion Cyclotron Waves

Abstract During geomagnetic storms, magnetospheric wave activity drives the ion precipitation which can become an important source of energy flux into the ionosphere and strongly affect the dynamics of the magnetosphere-ionosphere coupling. In this study, we investigate the role of Electro Magnetic Ion Cyclotron (EMIC) waves in causing ion precipitation into the ionosphere using simulations from the RAM-SCBE model with and without EMIC waves included. The global distribution of H-band and He-band EMIC wave intensity in the model is based on three different EMIC wave models statistically derived from satellite measurements. Comparisons among the simulations and with observations suggest that the EMIC wave model based on recent Van Allen Probes observations is the best in reproducing the realistic ion precipitation into the ionosphere. Specifically, the maximum precipitating proton fluxes appear at L = 4–5 in the afternoon-to-night sector which is in good agreement with statistical results, and the temporal evolution of integrated proton energy fluxes at auroral latitudes is consistent with earlier studies of the stormtime precipitating proton energy fluxes and vary in close relation to the SYM-H index. Besides, the simulations with this wave model can account for the enhanced precipitation of < 20 keV proton energy fluxes at regions closer to Earth (L < 5) as measured by NOAA/POES satellites, and reproduce reasonably well the intensity of <30 keV proton energy fluxes measured by DMSP satellites. It is suggested that the inclusion of H-band EMIC waves improves the intensity of precipitation in the model leading to better agreement with the NOAA/POES data.

Shreedevi, P.; Yu, Yiqun; Ni, Binbin; Saikin, Anthony; Jordanova, Vania;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028553

EMIC waves; Geomagnetic storms; proton precipitation; ring current modeling; MI coupling; wave particle interaction; Van Allen Probes

Challenging the Use of Ring Current Indices During Geomagnetic Storms

Abstract The ring current experiences dramatic enhancements during geomagnetic storms, however understanding the global distribution of ring current energy content is restricted by spacecraft coverage. Many studies use ring current indices as a proxy for energy content, but these indices average over spatial variations and include additional contributions. We have conducted an analysis of Van Allen Probes’ data, identifying the spatial distribution and storm-time variations of energy content. Ion observations from the HOPE and RBSPICE instruments were used to estimate energy content in L-MLT bins. The results show large enhancements particularly in the premidnight sector during the main phase, alongside reductions in local time asymmetry and intensity during the recovery phase. A comparison with estimated energy content using the Sym-H index was conducted. In agreement with previous results, the Sym-H index significantly overestimates (by up to ∼ 4 times) the energy content, and we attribute the difference to contributions from additional current systems. A new finding is an observed temporal discrepancy, where energy content estimates from the Sym-H index maximise 3 to 9 hours earlier than in situ observations. Case studies reveal a complex relationship, where variable degrees of agreement between the Sym-H index and in situ measurements are observed. The results highlight the drawbacks of ring current indices and emphasise the variability of the storm time ring current.

Sandhu, J.; Rae, I.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028423

ring current; Geomagnetic storms; Van Allen Probes; inner magnetosphere; substorms

2020

Correlations Between Dispersive Alfvén Wave Activity, Electron Energization, and Ion Outflow in the Inner Magnetosphere

Using measurements from the Van Allen Probes, we show that field-aligned fluxes of electrons energized by dispersive Alfvén waves (DAWs) are prominent in the inner magnetosphere during active conditions. These electrons have preferentially field-aligned anisotropies from 1.2 to >2 at energies ranging from tens of electron volts to several kiloelectron volts (keV), with largest values being coincident with magnetic field dipolarizations. Comparisons reveal that DAW energy densities and Poynting fluxes are strongly correlated with precipitating electron energies and energy fluxes and also O+ ion outflow energies. These observations yield empirical inner magnetosphere relations between the DAW and electron inputs and the O+ ion outflow response, providing important constraints for models. They also suggest that DAWs play an important role in enhancing field-aligned electron input into the ionosphere that facilitates the outflow and subsequent energization of O+ ions in the wave fields into the inner magnetosphere.

Hull, A.; Chaston, C.; Bonnell, J.; Damiano, P.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088985

dispersive Alfvén waves; field-aligned electrons; inner magnetosphere; oxygen ion outflow; Geomagnetic storms; substorms; Van Allen Probes

Ring Current Decay

K.Jordanova, Vania;

Published by: Ring Current Investigations The Quest for Space Weather Prediction      Published on:

YEAR: 2020     DOI: 10.1016/B978-0-12-815571-4.00006-8

collisional losses; wave-particle interactions; Geomagnetic storms; Magnetopause Losses; ring current; field line curvature scattering; Van Allen Probes

2019

The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements

Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8- to 7.7-MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense storms with/without flux enhancements of different energy electrons are conducted. The results suggest that the storms with higher solar wind speed, sustained southward interplanetary magnetic field Bz, lower solar wind number density, higher solar wind Ey, and elevated and sustained substorm activity are more likely to cause ultrarelativistic electron flux enhancements in the outer belt. Comparing results of different energy electrons, the solar wind speed and AE index are the two parameters mostly correlated with the energy-dependent acceleration of ultrarelativistic electrons: Storms with higher solar wind speed and elevated and sustained substorm activity are more likely to cause flux enhancement of ultrarelativistic electrons with higher energies. This suggests the important roles of inward radial diffusion as well as the source and seed populations provided by substorms on the energy-dependent acceleration of ultrarelativistic electrons.

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026257

Acceleration mechanism; Geomagnetic storms; Radiation belt; solar wind conditions; ultrarelativistic electrons; Van Allen Probes

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

2018

Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves

A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfv\ enic fluctuations and multi-timescale modulation of enhanced atmospheric X-ray bremsstrahlung emission. The properties of the Alfv\ enic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro-radii scale field structures. It is shown that this scattering may lead to the transport of electrons into the loss cone over an energy range from hundreds of keV to multi-MeV on diffusive timescales on the order of hours. This process may account for modulation of atmospheric X-ray fluxes observed from balloons and constitute a significant loss process for the radiation belts.

Chaston, C.; Bonnell, J.; Halford, A.; Reeves, G.; Baker, D.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079527

Alfven waves; drift-bounce resonance; energetic particles; Geomagnetic storms; pitch-angle scattering; Radiation belts; Van Allen Probes

The Acceleration of Ultrarelativistic Electrons During a Small to Moderate Storm of 21 April 2017

The ultrarelativistic electrons (E > ~3 MeV) in the outer radiation belt received limited attention in the past due to sparse measurements. Nowadays, the Van Allen Probes measurements of ultrarelativistic electrons with high energy resolution provide an unprecedented opportunity to study the dynamics of this population. In this study, using data from the Van Allen Probes, we report significant flux enhancements of ultrarelativistic electrons with energies up to 7.7 MeV during a small to moderate geomagnetic storm. The underlying physical mechanisms are investigated by analyzing and simulating the evolution of electron phase space density. The results suggest that during this storm, the acceleration mechanism for ultrarelativistic electrons in the outer belt is energy-dependent: local acceleration plays the most important role in the flux enhancements of ~3\textendash5 MeV electrons, while inward radial diffusion is the main acceleration mechanism for ~7 MeV electrons at the center of the outer radiation belt.

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

Published by: Geophysical Research Letters      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018GL078582

Energy-dependent acceleration; Geomagnetic storms; Inward radial diffusion; Local Acceleration; Radiation belts; Ultra-relativistic electrons; Van Allen Probes

Modeling the Depletion and Recovery of the Outer Radiation Belt During a Geomagnetic Storm: Combined MHD and Test Particle Simulations

During geomagnetic storms the intensities of the outer radiation belt electron population can exhibit dramatic variability. Deep depletions in intensity during the main phase are followed by increases during the recovery phase, often to levels that significantly exceed their pre-storm values. To study these processes, we simulate the evolution of the outer radiation belt during the 17 March 2013 geomagnetic storm using our newly-developed radiation belt model (CHIMP) based on test particle and coupled 3D ring current and global MHD simulations, and driven solely with solar wind and F10.7 flux data. Our approach differs from previous work in that we use MHD information to identify regions of strong, bursty, and azimuthally localized Earthward convection in the magnetotail where test particles are then seeded. We validate our model using in situ Van Allen Probe electron intensities over a multi-day period and show that our model is able to reproduce meaningful qualitative and quantitative agreement. Analysis of our model enables us to study the processes that govern the transition from the pre- to post-storm outer belt. Our analysis demonstrates that during the early main phase of the storm the pre-existing outer belt is largely wiped out via magnetopause losses and subsequently a new outer belt is created during a handful of discrete, mesoscale injections. Finally, we demonstrate the potential importance of magnetic gradient trapping in the transport and energization of outer belt electrons using a controlled numerical experiment.

Sorathia, K.; Ukhorskiy, A; Merkin, V.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018JA025506

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; Van Allen Probes

Determining the mode, frequency, and azimuthal wave number of ULF waves during a HSS and moderate geomagnetic storm

Ultra-low frequency (ULF) waves play a fundamental role in the dynamics of the inner-magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale (MMS) mission, we characterize the evolution of ULF waves during a high-speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations (AFINO) code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the MMS spacecraft, we estimate the toroidal mode ULF azimuthal wave number throughout the geomagnetic storm. We concentrate on the toroidal mode as the HSSs compresses the day side magnetosphere resulting in an asymmetric magnetic field topology where toroidal mode waves can interact with energetic electrons. Analysis of the mode structure and wave numbers demonstrates that the generation of the observed ULF waves is a combination of externally driven waves, via the Kelvin-Helmholtz instability, and internally driven waves, via unstable ion distributions. Further analysis of the periods and toroidal azimuthal wave numbers suggests that these waves can couple with the core electron radiation belt population via the drift resonance during the storm. The azimuthal wave number and structure of ULF wave power (broadband or discrete) have important implications for the inner-magnetospheric and radiation belt dynamics.

Murphy, Kyle; Inglis, Andrew; Sibeck, David; Rae, Jonathan; Watt, Clare; Silveira, Marcos; Plaschke, Ferdinand; Claudepierre, Seth; Nakamura, Rumi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2017JA024877

azimuthal wave number; Geomagnetic storms; mode structure; Radiation belts; ULF waves; Van Allen Probes

An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements

Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L-shell (L=1 \textendash 6), magnetic local time (MLT), electron energy (~30 keV \textendash 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV electrons, model results show more significant day-night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90\textdegree pitch angle (PA) and lower fluxes at lower PAs for higher energy electrons and during active times are also present, which could be due to EMIC wave scattering. For 100s of keV electrons, cap PADs are generally present in the slot region during quiet times and their energy-dependent features are consistent with hiss wave scattering, while during active times, cap PADs are less significant especially at outer part of slot region, which could be due to the complex energizing and transport processes. 90\textdegree-minimum PADs are persistently present in the inner belt and appear in the slot region during active times, and minima at 90\textdegree PA are more significant for electrons with higher energies, which could be a critical evidence in identifying the underlying physical processes responsible for the formation of 90\textdegree-minimum PADs.

Zhao, H.; Friedel, R.; Chen, Y.; Reeves, G.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.; Claudepierre, S.; Fennell, J.; Blake, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2018JA025277

Empirical Model; Geomagnetic storms; inner belt and slot region; Pitch angle distribution; radiation belt electrons; Van Allen Probes

The global statistical response of the outer radiation belt during geomagnetic storms

Using the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non-adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm-time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) dependent behaviour in the seed (150 MeV/G), relativistic (1000 MeV/G), and ultra-relativistic (4000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, whilst the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ-dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

Murphy, Kyle; Watt, C.; Mann, Ian; Rae, Jonathan; Sibeck, David; Boyd, A.; Forsyth, C.; Turner, D.; Claudepierre, S.; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 04/2018

YEAR: 2018     DOI: 10.1002/2017GL076674

Geomagnetic storms; magnetospheric dynamics; Radiation belts; Solar Wind-Magnetosphere Coupling; statistical analysis; Van Allen Probes

Radiation belt \textquotedblleftdropouts\textquotedblright and drift-bounce resonances in broadband electromagnetic waves

Observations during the main phase of geomagnetic storms reveal an anti-correlation between the occurrence of broadband low frequency electromagnetic waves and outer radiation belt electron flux. We show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on timescales less than a drift orbit. This process may provide outward transport sufficient to account for electron \textquotedblleftdropouts\textquotedblright during storm main phase and more generally modulate the outer radiation belt during geomagnetic storms.

Chaston, C.; Bonnell, J.; Wygant, J.; Reeves, G.; Baker, D.; Melrose, D.;

Published by: Geophysical Research Letters      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017GL076362

Alfven waves; Geomagnetic storms; Radial Transport; Radiation belts; Van Allen Probes

2017

On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations

Using Van Allen Probes ECT-REPT observations we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion and no change in flux values depends strongly on L and energy. Enhancement events are more common for \~ 2 MeV electrons at L \~ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no change events are more frequent at L < 3.5 for E\~ 3 MeV particles. Moreover, for L > 4.5 the probability of enhancement, depletion or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at Geosynchronous orbit may be used as a proxy to monitor E>=1.8 MeV electrons in the outer belt.

Moya, Pablo.; Pinto, \; Sibeck, David; Kanekal, Shrikanth; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024735

Geomagnetic storms; Radiation belts; relativistic electrons; Van Allen Probes

On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*

The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron phase space density (PSD) and solar wind speed, southward IMF Bz, SYM-H, and AL indices are found over wide μ and L* ranges, with higher correlation coefficients and shorter time lags for low-μ electrons than high-μ electrons; the anticorrelation between electron PSD and solar wind proton density is limited to high-μ electrons at high L*. The solar wind dynamic pressure has dominantly positive correlation with low-μ electrons and negative correlation with high-μ electrons at different L*. In addition, electron PSD enhancements also correlate well with various solar wind/geomagnetic parameters, and for most parameters this correlation is even better than that of electron PSD while the time lag is also much shorter. Among all parameters investigated, AL index is shown to correlate the best with electron PSD enhancements, with correlation coefficients up to ~0.8 for low-μ electrons (time lag ~ 0 day) and ~0.7 for high-μ electrons (time lag ~ 1\textendash2 days), suggesting the importance of seed and source populations provided by substorms in radiation belt electron PSD enhancements.

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023658

Geomagnetic storms; magnetospheric substorms; Phase space density; radiation belt electron content; radiation belt electrons; Solar wind; Van Allen Probes

2016

Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4\textendash6 April and 18\textendash20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR\textquoterights spatial distribution and frequency range, and the current results have a wide application to all other magnetized astrophysical objects in the universe.

Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071728

AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes

RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm

Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using L and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science observations. The dynamics of the source (approximately tens of keV) and seed (approximately hundreds of keV) populations of the radiation belts simulated with RAM-SCB is compared with Van Allen Probes Magnetic Electron Ion Spectrometer observations in the morning sector and with measurements from NOAA 15 satellite in the predawn and afternoon MLT sectors. We find that although the low-energy (E< 100 keV) electron fluxes are in good agreement with observations, increasing significantly by magnetospheric convection during both SYM-H dips while decreasing during the intermediate recovery phase, the injection of high-energy electrons is underestimated by this mechanism throughout the storm. Local acceleration by chorus waves intensifies the electron fluxes at E>=50 keV considerably, and RAM-SCB simulations overestimate the observed trapped fluxes by more than an order of magnitude; the precipitating fluxes simulated with RAM-SCB are weaker, and their temporal and spatial evolutions agree well with POES/Medium Energy Proton and Electron Detectors data.

Jordanova, V.; Tu, W.; Chen, Y.; Morley, S.; Panaitescu, A.-D.; Reeves, G.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022470

Geomagnetic storms; inner magnetosphere; Van Allen Probes

Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere

Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on 1 November 2012 and 17 March 2013 and associated dropouts of a few MeV electron fluxes. They are electromagnetic, in the frequency range ~0.5 to several Hz, and amplitude ~0.1 to a few nT in magnetic and ~0.1 to a few mV/m in electric field, with both the wave velocity and the Poynting vector directed almost parallel to the background magnetic field. These properties are very similar to those of electromagnetic ion cyclotron waves, which are believed to contribute to loss of ring current ions and radiation belt electrons and therefore can be also important for inner magnetosphere dynamics.

Usanova, M.; Malaspina, D.; Jaynes, A.; Bruder, R.; Mann, I.; Wygant, J.; Ergun, R.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1710.1002/2016GL070233

cyclotron harmonic waves; energetic particle loss; Geomagnetic storms; inner magnetosphere; oxygen; Van Allen Probes

Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere

Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to theSYM-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of SYM-H index, the high-energy component (>100 keV) varies on much longer timescales and shows either no correlation or anticorrelation with the absolute value of SYM-H index. Our study also shows that the contributions of the low- and high- energy protons to the inner magnetosphere energy content are comparable. Thus, our results conclusively demonstrate that proton dynamics, and as a result the energy budget in the inner magnetosphere, do not vary strictly on storm time timescales as those are defined by the SYM-H index.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068013

energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes

Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12\% for the moderate storm and ~7\% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30\% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

Zhao, H.; Li, X.; Baker, D.; Claudepierre, S.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016JA022358

deep injections; Geomagnetic storms; ring current; ring current energy content; ring current electrons; Van Allen Probes

Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere

Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to the Sym-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of Sym-H index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the absolute value of Sym-H index. Our study also shows that the contributions of the low- and high- energy protons to the inner magnetosphere energy content are comparable. Thus, our results conclusively demonstrate that proton dynamics, and as a result the energy budget in the inner magnetosphere, do not vary strictly on storm-time timescales as those are defined by the Sym-H index.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Geophysical Research Letters      Published on: 03/2016

YEAR: 2016     DOI: 10.1002/2016GL068013

energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes

2015

Extreme ionospheric ion energization and electron heating in Alfv\ en waves in the storm-time inner magnetosphere

We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to > 50 keV while the electrons are field-aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfv\ en waves and kinetic field-line resonances. The fluctuations extend from L≈3 out to the apogee of the Van Allen Probes spacecraft at L≈6.5. They thereby span most of the L-shell range occupied by the ring current. These measurements suggest a model for ionospheric ion outflow and energization driven by dispersive Alfv\ en waves that may account for the large storm-time contribution of ionospheric ions to magnetospheric energy density.

Chaston, C.; Bonnell, J.; Wygant, J.; Kletzing, C.; Reeves, G.; Gerrard, A.; Lanzerotti, L.; Smith, C.;

Published by: Geophysical Research Letters      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015GL066674

Alfven waves; electron precipitation; Geomagnetic storms; ion acceleration; ion outflow; ion upflo

Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

During the small storm on 14\textendash15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then gradually cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.

Xiao, Fuliang; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065745

Geomagnetic storms; magnetosonic waves; proton ring distribution; Radiation belts; Van Allen Probe results; Van Allen Probes; Wave-particle interaction

Broadband low frequency electromagnetic waves in the inner magnetosphere

A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magnetic spectral energy density with fsc obeys inline image over several decades with a spectral break-point at fb ≈1 Hz. The values for α are log normally distributed with α = 1.9 \textpm 0.6 for fsc < fb andα = 2.9 \textpm 0.6 for fsc > fb. A is a function of geomagnetic activity with the largest values observed over intervals of decreasing Dst index during the main phase of geomagnetic storms. At these times these waves are nearly always present in the night-side inner magnetosphere and are commonly observed from L = 3 outward. The observed variation of the electric to magnetic field amplitude with fsc is well described by a dispersive Alfv\ en wave model under the assumption that fsc is primarily a consequence of the Doppler shift of plasma frame structures moving over the spacecraft. The robust anti-correlation between the time rate change of the Dst index and wave spectral energy density coupled with the ability of dispersive Alfv\ en waves to drive transverse ion acceleration suggests that these waves may boost ion energy density in the inner magnetosphere and intensify the ring current during storm times.

Chaston, C.; Bonnell, J.; Kletzing, C.; Hospodarsky, G.; Wygant, J.; Smith, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021690

Alfven waves; Geomagnetic storms; ring current; turbulence; Van Allen Probes

The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute more significantly to the ring current than those with higher energies; while the higher energy protons dominate during the recovery phase and quiet times. The enhancements of higher energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the March 29, 2013 storm we investigated in detail, the contribution from O+ is ~25\% of the ring current energy content during the main phase, and the majority of that comes from < 50 keV O+. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. The results show that the measured ring current ions contribute about half of the Dst depression.

Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/2015JA021533

Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes

The effects of geomagnetic storms on electrons in Earth\textquoterights radiation belts

We use Van Allen Probes data to investigate the responses of 10s of keV to 2 MeV electrons throughout a broad range of the radiation belts (2.5 <= L <= 6.0) during 52 geomagnetic storms from the most recent solar maximum. Electron storm-time responses are highly dependent on both electron energy and L-shell. 10s of keV electrons typically have peak fluxes in the inner belt or near-Earth plasma sheet and fill the inner magnetosphere during storm main phases. ~100 to ~600 keV electrons are enhanced in up to 87\% of cases around L~3.7, and their peak flux location moves to lower L-shells during storm recovery phases. Relativistic electrons (>=~1 MeV) are nearly equally likely to produce enhancement, depletion, and no-change events in the outer belt. We also show that the L-shell of peak flux correlates to storm magnitude only for 100s of keV electrons.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Kilpua, E.; Hietala, H.;

Published by: Geophysical Research Letters      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015GL064747

electrons; Van Allen Probes; Geomagnetic storms; Radiation belts

Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90\textdegree pitch angle with n-values of 2\textendash3 as a supportive signature of chorus acceleration outside the plasmasphere. High n-values also exist inside the plasmasphere, being localized adjacent to the plasmapause and exhibiting energy dependence, which suggests a significant contribution from EMIC waves scattering. During quiet periods, n-values generally evolve to become small, i.e., 0\textendash1. The slow and long-term decays of the ultra-relativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell dependent decay timescales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay timescales τd for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss induced pitch angle scattering and inward radial diffusion. As L shell increases to L ~ 3.5, a narrow region exists (with a width of ~0.5 L) where the observed ultra-relativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, τd generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based upon the sinn α function fitting and the estimate of decay timescale offers a convenient and useful means to evaluate the underlying physical processes that play a role in driving the acceleration and loss of ultra-relativistic electrons and to assess their relative contributions.

Ni, Binbin; Zou, Zhengyang; Gu, Xudong; Zhou, Chen; Thorne, Richard; Bortnik, Jacob; Shi, Run; Zhao, Zhengyu; Baker, Daniel; Kanekal, Shrikhanth; Spence, Harlan; Reeves, Geoffrey; Li, Xinlin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021065

adiation belt ultra-relativistic electrons; decay timescales; Geomagnetic storms; Pitch angle distribution; resonant wave-particle interactions; Van Allen Probes

Global Storm-Time Depletion of the Outer Electron Belt

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the MagEIS experiment shows that magnetopause loss accounts for most of the observed depletion at L>5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm-time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

Ukhorskiy, A; Sitnov, M.; Millan, R.; Kress, B.; Fennell, J.; Claudepierre, S.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020645

dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; ring current; Van Allen Probes

EMIC waves and plasmaspheric and plume density: CRRES results

Electromagnetic ion cyclotron (EMIC) waves frequently occur during geomagnetic storms, specifically during the main phase and 3\textendash6 days following the minimum Sym - H value. EMIC waves contribute to the loss of ring current ions and radiation belt MeV electrons. Recent studies have suggested that cold plasma density structures found inside the plasmasphere and plasmaspheric plumes are important for the generation and propagation of EMIC waves. During the CRRES mission, 913 EMIC wave events and 124 geomagnetic storms were identified. In this study we compare the quiet time cold plasma density to the cold plasma density measured during EMIC wave events across different geomagnetic conditions. We found statistically that EMIC waves occurred in regions of enhanced densities. EMIC waves were, on average, not associated with large local negative density gradients.

Halford, A.; Fraser, B.; Morley, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020338

EMIC waves; Geomagnetic storms; plasmasphere; plasmaspheric plumes

2014

Statistical analysis of ground-based chorus observations during geomagnetic storms

Chorus observations from two ground-based, Antarctic receiving stations are analyzed for a set of geomagnetic storms from 2000 to 2010. Superposed epoch analysis is performed together with statistical hypothesis testing to determine whether the observed quantities (geomagnetic indices, outer belt energetic electron fluxes, and chorus properties) are statistically significantly different as functions of storm phase, storm size, and storm type. Waves generated in the outer dayside magnetosphere and observed on the ground at South Pole Station are suppressed during main phase and are statistically unchanged from random intervals during recovery phase. Waves generated in the inner magnetosphere and observed on the ground at Palmer Station are significantly enhanced during storm main phase and for about 3 days into recovery. During main phase, there are larger enhancements in chorus occurrence, amplitude, and frequency extent as observed at Palmer during larger storms. During recovery phase, there are larger enhancements in chorus occurrence, amplitude, and frequency extent as observed at Palmer during larger storms and during storms where the average rate of electron flux increase, averaged across the outer belt, is higher.

Spasojevic, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.1010.1002/2014JA019975

chorus waves; Geomagnetic storms; outer belt electrons

The role of small-scale ion injections in the buildup of Earth\textquoterights ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm

Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on March 17th 2013 (minimum Dst ~ -137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightside magnetosphere in the region L ~ 4 \textendash 6. Although isolated injections have been previously reported inside geosynchronous orbit, the large number of small-scale injections observed in this event suggests that, during geomagnetic storms injections provide a robust mechanism for transporting energetic ions deep into the inner magnetosphere. In order to understand the role that these injections play in the ring current dynamics, we determine the following properties for each injection: i) associated pressure enhancement, ii) the time duration of this enhancement, iii) and the lowest and highest energy channels exhibiting a sharp increase in their intensities. Based on these properties, we estimate the effect of these small-scale injections on the pressure buildup during the storm. We find that this mode of transport could make a substantial contribution to the total energy gain in the storm-time inner magnetosphere.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Sotirelis, T.; Mauk, B.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014JA020096

Geomagnetic storms; Ion injections; ring current; Van Allen Probes



  1